案例背景
在过去几年,全球的数据量以每年58%的速度快速增长,类型也不断丰富,模型训练拥有海量的优质样本,但更大的挑战来自于算法和硬件计算架构,为此,宝德服务器提出了基于深度卷积神经网络的图像识别软硬件一体化解决方案。
图像识别指用视觉传感器(摄像头)和计算机来模拟人眼和大脑,进行物体识别、跟踪和测量,进而做图形处理让计算机理解真实世界。图像识别技术有很多应用场景,如:人脸识别、拍照识别、物体识别等各种图像场景的识别。基于深度学习的图像识别技术发展痛点用来训练识别模型的样本数据不足训练图像识别模型,需大量的样本数据多次迭代训练,数据须具有识别对象的基本特征,有不同的背景角度区分,数据样本越丰富,模型的识别精度越高。数据量积累不足,使得模型精准度往往不高。
图像识别算法不够先进图像识别从最初的特征值抓取,发展到模式识别的边缘滤波,形态学检测经历了20年。现在主要停留在浅层训练的机器学习阶段,尽管模型可实现机器替代人,但算法无法自行迭代学习,仅算是样本训练的智能程序。
计算机集群性能不够,计算用时太长算法执行需硬件架构的支撑,一个模型对海量的样本数据进行学习,在CPU上执行一般需几天甚至几个月,大大拉长了研发周期和拖慢产品进程。因此,先进的硬件计算架构是激活优秀算法的前提。